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Distortion of binoculars revisited: Does
the sweet spot exist?
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Sixty years ago, August Sonnefeld of Zeiss reported on observations with experimental telescopes. The goal of
his investigation was to determine the ideal amount of distortion applied to optical instruments that are used
in combination with the human eye. His studies were inconclusive and partially contradictory. We have picked
up this problem once again, adopting a modern point of view about the human imaging process, and supported
by computer graphics. Based on experiments with Helmholtz checkerboards, we argue that human imaging
introduces a certain amount of barrel distortion, which has to be counterbalanced through the implementation
of an equally strong pincushion distortion into the binocular design. We discuss in detail how this approach is
capable of eliminating the globe effect of the panning binocular and how the residual pincushion distortion
affects the image when the eye is pointing off-center. Our results support the binocular designer in optimizing
his instrument for its intended mode of application, and may help binocular users and astronomers better un-
derstand their tools. © 2009 Optical Society of America

OCIS codes: 220.1000, 330.4060, 330.7321, 000.2850.
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. INTRODUCTION
n 1949, August Sonnefeld of Zeiss published a paper in
he Deutsche Optische Wochenschrift, that would eventu-
lly change the design philosophy of contemporary bin-
culars [1]. Prior to 1950, the overwhelming majority of
inoculars were constructed “free of distortion” [see Eq.
1) below for a definition], while subsequently a certain
mount of pincushion distortion was added to the optical
ormula of handheld binoculars in order to improve their
maging properties. Currently, Nikon, in their latest cata-
og, suggests evaluating the apparent field of view once
gain according to the traditional tangent condition.
ther binocular manufacturers seem ready to follow the

rend to return to the design of “undistorted” binoculars.
ence, along with the 60th anniversary of Sonnefeld’s
emorable paper, it appears desirable to offer a reminder

nd search for the reasons that once initiated a paradig-
atic change in binocular design.
Sonnefeld’s studies had been triggered by frequently

e-emerging complaints, in part from officers on the
attlefields of both World Wars, concerning the imaging
haracteristics of contemporary handheld “Feldstecher.”
n order to eliminate its rectilinear distortion, a telescopic
nstrument was designed such that the ratio

tan�a�

tan�A�
= m �tangent condition� �1�

emained constant all over the field of view [1]. Here, A
tands for the true angle of the object with respect to the
ptical axis, a for the apparent angle of its image with re-
pect to the center of field, and m for the (paraxial) mag-
ification. This particular imaging equation, commonly
enoted tangent condition, had already been introduced
1084-7529/10/010050-8/$15.00 © 2
y Airy in 1827, and, since it was able to reproduce pat-
erns on a flat surface undistorted over the entire field of
iew, it had been well established as the canonical design
rinciple for distortion-free camera lenses. However,
oubts remained whether or not the same design prin-
iple would be able to deliver an undistorted imaging of
nstruments that were used in combination with the hu-

an eye. In fact, binoculars designed after the tangent
ondition appeared to display a rather strange kind of dis-
ortion, which became particularly obvious whenever that
inocular was used for panning. The moving image ap-
eared to roll over a curved, convex surface. This phenom-
non, henceforth denoted globe effect, seemed to be absent
ith the static image, but it miraculously reappeared
ith the moving image each time the binocular was
anned. During the years of the First World War, Whit-
ell [2], Tscherning [3], and Weiss [4] had already specu-

ated whether or not the angle condition

a

A
= m �angle condition� �2�

ould actually serve as a more suitable approach to opti-
al instruments in combination with the human eye. In
his spirit, Sonnefeld formulated the central question of
is manuscript (freely translated by the author):
“The fundamental question is the following: For the ap-

lication of the instrument in combination with the hu-
an eye, does the tangent or the angle condition repre-

ent the better approach to eliminate distortion?”
It is no surprise to find the community of leading opti-

al designers assuming a critical position against the
deas of Whitwell and his supporters. Boegehold, Zeiss op-
ician and former scholar of Abbe and assistant of von
ohr, rejected the angle condition in his 1921 paper,
010 Optical Society of America
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learly supporting the traditional tangent condition as be-
ng the only adequate approach to minimize distortion in
inoculars [5].
Further complications were arising, because the imag-

ng Eqs. (1) and (2) were just two examples of a huge va-
iety of different schemes to transform the radial object
ngle A into its apparent angle a. In 1946, Slevogt, an-
ther member of the Zeiss design bureau, published a pa-
er in which he analyzed the imaging process of the eye in
onsiderable detail [6]. His approach was based on a
uch earlier work by Helmholtz [7], who had studied the

istortion properties of curves under eye movements in
ccordance with Listing’s law [8]. Slevogt’s research re-
ulted in the proposition that a binocular, if designed af-
er yet another imaging equation,

tan�a/2�

tan�A/2�
= m �circle condition�, �3�

ould deliver a practically distortion-free image to the
ye. Sonnefeld had subsequently denoted this equation as
ircle condition, because its characteristic property is to
ap small circles into circles over the entire field of view

1]. In his summary, Slevogt wrote (free translation by the
uthor):
“We suggest denoting loupes and oculars as free of dis-

ortion if they satisfy the circle condition. Observations
ave to verify whether this definition is justified.”

. CONFUSING EXPERIMENTAL FINDINGS
n order to summarize the plethora of different imaging
quations, we shall now introduce the more general ex-
ression

tan�ka�

tan�kA�
= m, �4�

eaturing the distortion parameter k, which would be k
1 in case of the tangent condition, k=0.5 in case of the
ircle condition, and approach the limit k→0 in case of
he angle condition.

In his 1949 paper, Sonnefeld reports on tests which he
arried out with two self-made experimental telescopes of
nly m=1.5�, but huge true angles of view of 90°. One of
hese two instruments was designed after the traditional
angent condition, Eq. (1), the other one after the angle
ondition, Eq. (2), as had previously been suggested by
hitwell and others. He reports [1]:
“I let 50 test persons, in disregard of their eye condi-

ions, observe with these telescopes, and found that the
verwhelming majority, and in particular the more expe-
ienced among them, regarded the one which matched the
ngle condition as almost free of distortion, while report-
ng an obvious barrel distortion with the other one which
as made after the tangent condition.”
However, his observations, carried out with another set

f three self-made telescopes of 10�, were inconclusive:
“The observations did not lead to any clarification,

ince none of them delivered an image free of distortion.
lthough in particular the circle condition was satisfied to
ighest accuracy (i.e., in terms of the telescope design;
his remark by the author), it clearly delivered a pincush-
on distortion, and even more so did the angle condition.
n image almost free of distortion delivered that tele-
cope, which actually failed to meet the tangent condition
nd instead exhibited a distortion characteristic between
angent and circle conditions.”

Hence, the entire base of experimental data appeared
o be inconsistent and confusing. In order to understand
hat Sonnefeld did in fact observe behind his oculars, we

hall first return to Helmholtz’s work of 1867 and take a
loser look at the distortion properties of our visual imag-
ng system.

. HELMHOLTZ’S CHECKERBOARDS
n 1867, Helmholtz reported that a checkerboard pattern
ith a certain amount of pincushion distortion would ap-
ear undistorted when viewed from a specific, close dis-
ance [7]. The elimination of the pincushion distortion
ould be interpreted as the result of an additional per-
pective distortion that arises once the observer’s eye ap-
roaches the distorted checkerboard pattern. Based on
is theory of eye movement, Helmholtz’s results were—as
as later shown by Slevogt—consistent with the claim

hat the amount of pincushion distortion would have to
atisfy the circle condition, Eq. (3), in order to deliver
traight lines to the observer’s eye. Recent studies have
onfirmed Helmholtz’s findings in principle. However, it
eems that the amount of pincushion distortion that is
ompensated by the visual system might be smaller than
redicted by Helmholtz [9].
Let us now consider Helmholtz checkerboards with

arious degrees of distortion, Fig. 1, produced in the fol-
owing way: Assuming a telescope with 10� power and 7°
rue field of view, Eq. (4) was applied using different val-

ig. 1. Helmholtz checkerboards with various different
mounts of pincushion distortion generated using Eq. (6). The
istortion parameter k was defined in Eq. (4). To generate these
mages, an undistorted checkerboard pattern was imaged using
elescopes with 10� and 7° true field of view.
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es of the distortion parameter k to image an undistorted
heckerboard pattern. The imaging process is sketched in
ig. 2: A regular pattern on the wall (checkerboard) is
apped onto the image space of the binocular through
q. (4). During this process, the object angle A of each
oint on the wall surface is transformed into the apparent
ngle a according to

a = �1/k�arctan�m tan�kA��. �5�

he apparent angular coordinates of all points of the wall
urface define the properties of the image space, not to be
onfused with the visual space, which will be introduced
n Eq. (8) below. Of course, the radial distance of any point
o the center of field is proportional to tan�A� on the wall
nd tan�a� in image space. Therefore, the images in Fig. 1
isplay the radial distance of each image point computed
s the tangent of the apparent angle, i.e.,

tan�a� = tan��1/k�arctan�m tan�kA���. �6�

f k equals unity (tangent condition), then

tan�a� = m tan�A�, �7�

.e., a radial distance on the wall is linearly mapped into a
adial distance in image space, and the image is free of
istortion (upper left panel in Fig. 1). A reduction of k be-
ow unity introduces a pincushion distortion into the im-
ge space.
If we were dealing with cameras here, then this image

pace would coincide with the image plane of the lens and
irectly recorded by the photographic sensor, thereby fi-
alizing the imaging process. Obviously, such a camera

ens should be designed after the tangent condition �k
1� in order to generate undistorted images. The binocu-

ar, however, is an afocal system with a virtual image lo-
ated in front of the observer. In order to reproduce the
mpression of the human vision behind the ocular, the im-
ge space has to be observed from a specific distance cho-
en such that its circular boundary appears under the
ame angle as the apparent angle of field of the binocular,
hich, in our case, amounts to roughly 70°. There are
lack bars plotted below the checkerboards in Fig. 1 that
how the approximate distance from which the images
ave to be viewed using a single eye and strictly fixating

ig. 2. (Color online) Flat surface (wall) is imaged into the im-
ge space by the binocular. During this process, the object angle
is transformed into the apparent angle a through Eq. (4). Any

adial distance to the center of field corresponds to the tangent of
hat angle.
n the center of the image while analyzing the distortion
roperties of the checkerboard patterns.
The author has published full screen versions of these

mages and asked members of binocular and telescope
iscussion boards on the Internet to carry out this experi-
ent [10]. The question was, which of these checker-

oards would appear undistorted when viewed under the
onditions mentioned above. Almost 30 test persons did
articipate, the majority of whom found that the checker-
oard designed after k=0.7 came closest to delivering
traight lines. A significant number of participants,
mong them a couple of amateur astronomers i.e., experi-
nced visual observers, reported a slight barrel distortion
ith the k=0.7 checkerboard and, at the same time, a mi-
or pincushion distortion with the k=0.5 checkerboard.
his would indicate that the ideal amount of distortion

hat is exactly compensated by our visual system might
e located somewhere between both examples.
These findings do partially coincide with the results of

omes et al. [9]: In fact, the eye does superimpose a cer-
ain amount of barrel distortion on the image space,
hich eliminates a corresponding amount of its pincush-

on distortion. According to their studies, the quantity of
his effect appears to be less than predicted by Helmholtz
k=0.5�, but there exist large interindividual differences.
omes et al. concluded that the exact amount of distor-

ion compensated by the eye might be about half as strong
s proposed by Helmholtz, which would correspond to a
heckerboard of distortion k�0.8. However, there are
ood reasons to believe that such an experiment might
ystematically underestimate the peripheral distortion of
ur visual system, and that the true amount of distortion
ight in fact be somewhat closer to the Slevogt/
elmholtz circle condition �k=0.5�. We will discuss this
atter again in Section 6, in which the situation of the

olling eye is studied in detail.

. IMAGING EQUATIONS FOR THE HUMAN
ISUAL SPACE
ased on the empirical findings of Section 3, we are now
ble to derive the imaging equations for our visual sys-
em. Here we have to implement the fact that a checker-
oard (or, more generally, an image space) featuring a cer-
ain amount of pincushion distortion appears undistorted
o the eye. This leads to our fundamental assumption:

Assumption: To each observer, there exists a certain,
erhaps individually different, checkerboard that appears
ndistorted under the experimental conditions as de-
cribed above.

As a consequence of this assumption, we are forced to
ntroduce the following additional transformation that ac-
ounts for this empirical fact:

y = �1/l�tan�la�, �8�

here y denotes the (perceived) radial distance of the im-
ge point with respect to the center of field, i.e., a radial
istance in the transformed image space. We shall denote
his transformed image space as visual space. The appar-
nt angle a is given by Eq. (5). The empirical and possibly
ndividually different parameter l describes the amount of
istortion generated by the human visual imaging pro-
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ess. Note that this transformation offers a parametric in-
erpolation between the various classical schools: The as-
umption l=1 would imply that our eye is recording the
mage space without distortion (the classical Airy/
oegehold school), while l→0 would imply y=a and sup-
ort Whitwell with his angle condition. In Appendix A, we
ill show that the visual distortion parameter is actually
quivalent to an intrinsic curvature of the visual space.

After inserting the apparent angle into Eq. (8) we ob-
ain

y = �1/l�tan��l/k�arctan�m tan�kA���. �9�

he special case m=1 delivers the imaging equation of
he bare eye,

y = �1/l�tan�lA�, �10�

n which the object angle A replaces the apparent angle a.
f the distortion parameter of the binocular equals the
istortion parameter of the eye, k= l, then Eq. (9) simpli-
es to

y = �m/l�tan�lA�. �11�

sually, binoculars offer magnifications that lead to
ather small true fields of view, so that the object angles A
o not exceed 5° and we safely approximate

y = �m/l�tan�lA� � m tan�A�. �12�

his transformation delivers an undistorted image of a
all pattern, because the radial distance tan�A� of the ob-

ect on the wall surface is linearly mapped into the radial
istance y of our visual space. In other words: The tan-
ent condition �k=1�, which generates undistorted images
ith a camera, has to be replaced with the condition k
l in order to deliver undistorted images for visual instru-
ents. The situation of low-power binoculars (e.g., opera

lasses), which have large true fields of view, so that the
bove approximations are invalid, will be discussed later
n Section 7.

The empirical findings of Section 3 imply that the dis-
ortion parameter of our eye is most likely located some-
here in the interval l� �0.6,0.8�, perhaps with interindi-
idual differences. For our illustrations and examples, we
hall henceforth define a value of l=0.6, without loss of
enerality of the mathematical formalism. Figure 3 dis-
lays the images of the checkerboards (Fig. 1) as per-
eived by the observer when following the assumption l
0.6. It is also assumed that the observer is fixating his
irection of view to the center of the checkerboard and
iewing from the correct distance, so that the image ap-
ears under the same angle as the apparent angle of field
f the binocular (�70° in our example). The formerly un-
istorted image (k=1, tangent condition) now displays a
ignificant barrel distortion, while the image formed with
he angle condition �k=0� shows a pincushion distortion.
oth intermediate cases (k=0.5, circle condition as pro-
osed by Helmholtz) and k=0.7 are nearly undistorted,
he former showing a very slight barrel and the latter a
imilarly small pincushion distortion. Naturally, the case
= l=0.6 would deliver an undistorted image here. There-

ore, the important result of this section may be summa-
ized as follows: While observing the image space as it is
enerated by the binocular, the human visual imaging
rocess adds a certain additional amount of barrel distor-
ion, which has to be compensated for through an equally
trong pincushion distortion along with the binocular de-
ign in order to deliver an undistorted image to the eye
i.e., in visual space).

. CHARACTERISTIC DRIFT RATIO AND
LOBE EFFECT

he previously discussed distortions also affect the image
roperties of the panning binocular. Whenever a binocu-
ar is used for surveillance applications, the observer has
o deal with a moving image, and it was the peculiar be-
avior of the moving image that triggered the redesign of
inoculars sixty years ago after a series of scientific dis-
ussions among the team of Zeiss engineers.

Whenever a binocular is panning, the angle of each ob-
ect around us turns into a variable of time. For the case
f simplicity, let us discuss the trajectory of a distant ob-
ect (e.g., a star), which, during panning, enters the field
f view at the edge, then passes through the center, and
nally exits at the opposite side of the field. We can evalu-
te the radial velocity of the object inside the visual space
s

ẏ =
mȦ cos−2�kA�

cos2��l/k�arctan�m tan�kA����1 + m2 tan2�kA��
,

�13�

hich, at the center of field, simplifies to

ig. 3. Checkerboards of Fig. 1 in visual space, i.e., as they ap-
ear to the observer’s eye when viewed close up and with the di-
ection of view pointing to the center of the checkerboard. The
ransformation was carried out using the visual imaging Eq. (8)
ssuming a distortion parameter l=0.6.
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ẏ�0� = mȦ. �14�

˙ is the time derivative of the object angle, i.e. the angu-
ar velocity of the panning binocular. We shall define the
haracteristic drift ratio

� �
ẏ�A�

ẏ�0�
, �15�

hich defines the radial velocity of the image point as a
unction of the object angle, scaled with its velocity at the
enter of field, yielding

� =
cos−2�kA�

cos2��l/k�arctan�m tan�kA����1 + m2 tan2�kA��
.

�16�

his quantity is plotted in Fig. 4, again assuming a visual
istortion parameter of l=0.6. For the case k= l, the drift
f the object is practically constant, because in this case
q. (16) simplifies to

� =
1

cos2�lA�
, �17�

nd since the field of view of the binocular, and hence A,
emain small, this term approximately equals unity all
ver the field of view. This implies a constant velocity of
he object while passing through the field of view and
ence avoids the emergence of any spurious image curva-
ure. Once the distortion of the binocular is reduced, i.e., k
s driven to higher values toward unity, the drift ratio
rops toward the edges of the field. This slowdown of the
bject’s velocity is consequence of the barrel distortion in
he visual space and generates the impression of an im-
ge rolling over a convex surface—the globe effect, which
as been reported to cause symptoms of motion sickness
o some observers while panning. The author has pre-
ented a couple of computer animations on his web page
hat demonstrate the impact of these phenomena with the
anning binocular [10].

ig. 4. (Color online) Characteristic drift ratio �, Eq. (16), for
ifferent degrees of distortion k as a function of the object angle
. Here, we assume a binocular with m=10� and 7° true field of
iew. The visual distortion parameter was assumed to be l=0.6.
The opposite effect arises when the pincushion distor-
ion is increased via reduction of k below the critical value
= l: Now, the image points speed up toward the edges of
eld, because there exists a residual pincushion distortion

nside the visual space. This generates the impression of
n image rolling over a concave surface, i.e., objects seem
o move away from the observer when approaching the
entral region of the field (the reader may consult the lit-
rature on optical flow here, e.g., [11]). In this context, it
s interesting to discuss the case of the angle condition k

0. Here, Eq. (16) simplifies to

� =
1

cos2�lmA�
, �18�

hich, through Eq. (2), delivers

� =
1

cos2�la�
. �19�

his equals the characteristic drift ratio of the bare eye,

� =
1

cos2�lA�
, �20�

n which the apparent angle a is replaced with the true
ngle A. One might therefore argue that the choice of the
ngle condition �k=0� would deliver the most natural
anning behavior for any binocular, because it would offer
he same velocity characteristics as does the bare eye
hile turning the head. However, there are a couple of se-

ious objections to such an approach. As discussed in Ap-
endix A, the intrinsic curvature of the visual space gen-
rates a certain amount of perceived curvature of the
orld when observed with the bare eye. The functional

dentity of both Eqs. (19) and (20) implies that the appar-
nt angle ‘a’ through the telescope behaves exactly as an
qually large true angle ‘A’ observed with the bare eye.
pplying this to the sky, we now perceive the same image
urvature through our binocular (which is actually imag-
ng a small, practically flat surface element of the sky) as
e do with the bare eye (which covers a large, curved sur-

ace element of the sky). This would perhaps be suitable
or handheld astronomical instruments, since while pan-
ing, stars display a motion along a concave surface just
s they do when observed with the bare eye. However, the
inocular now imposes the same amount of curvature to
ny other flat surface element, e.g., the wall of a house,
hich shows up as a residual pincushion distortion in Fig.
(lower right), making the binocular less suitable for ter-

estrial observation.

. THE ROLLING EYE
he situation turns more complex once the direction of
iew no longer coincides with the optical axis of the in-
trument. If the observer is pointing his direction of view
way from the center of the field, then the image space is
een from an angle and additional perspective distortions
re emerging. Figure 5 displays what is happening to the
mage of a regular wall pattern once the observer is fixat-
ng a point 20° (measured in apparent angle) below the
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enter of field. Again, a 10� binocular with 7° true field of
iew is assumed and a visual distortion parameter of l
0.6.
When interpreting these images, it is important to re-

lize that the observer’s impression about the imaging
haracteristics of his binocular is strongly influenced by
he amount of distortion he perceives near the direction of
iew, where the visual acuity is at its maximum. Figure 5
emonstrates that in the case of the tangent condition
k=1�, lines appear locally straight near the direction of
iew. Our overall impression therefore is that of an undis-
orted image, despite the fact that there exists a global
arrel distortion of the image. The latter becomes evident
ather with the panning binocular, as discussed in Section
, when the image is rolling as a global entity in front of
he eye. As soon as the distortion parameter k is reduced
elow unity, an inward curvature of the line emerges near
he direction of view, delivering the impression of a dis-
orted image. This is the consequence of the intrinsic pin-
ushion distortion of the image space, which, as a result of
he broken rotational symmetry, can no longer be compen-
ated for by the transformation Eq. (8). Hence, for off-
enter observations, the condition k= l no longer delivers
ndistorted images to the eye. For k=0.7, the perceived
istortion is still very weak and hardly noticeable to the
ser. The circle condition �k=0.5� and in particular the
ngle condition �k=0�, however, deliver a significantly
tronger pincushion distortion.

The results of this section are of relevance when inter-
reting the visual experiment with checkerboards of Sec-
ion 3. During these experiments, the test persons were
sked to keep their eyes fixated at the center of the check-
rboard, in order to judge the curvature of the lines exclu-
ively through peripheral observation. However, this fixa-
ion was neither enforced nor controlled by the
xperimental setup, and eye movements might have oc-

ig. 5. Visual space and the rolling eye. Here, the direction of
iew (cross) is offset 20° below the center of field. A visual distor-
ion parameter of l=0.6 was assumed.
urred unintentionally. In this case, the residual pincush-
on distortion would show up, and the observer would
end to select another checkerboard with a higher k value
s his personal “undistorted” candidate. Hence the results
f such a test might potentially be biased toward higher
alues of k, i.e., weaker pincushion distortion.

. LOW-POWER BINOCULARS
f the binocular has a low magnification m, then its true
eld of view is often very large. In this case, the approxi-
ation made in Eq. (12) no longer remains valid, and the

mage displays a residual distortion for the case k= l even
hen the observer is fixating its central region. Since for
ny l�1 we have

l−1 tan�lA�

tan�A�
� 1, �21�

regular wall pattern is being contracted at large object
ngles A, so that the image picks up an additional barrel
istortion. Equation (9) suggests that the choice of a dis-
ortion k� l might be used to increase the ratio l /k, and at
he same time drive the term tan�kA� toward the linear
egime in order to counterbalance that barrel distortion.
igure 6 displays the distortions that correspond to Son-
efeld’s experimental telescope with m=1.5 and huge true
ngle of field of 90°. The tangent condition �k=1� does in
act generate a very strong barrel distortion, which is not
ully eliminated by the pincushion distortion imposed in
he k=0.7 case or the circle condition �k=0.5�. Only the
ngle condition �k=0� nearly eliminates the barrel distor-
ion of this telescope. Hence, Sonnefeld’s observations as
eported in Section 2, were in fact correct: For such a tele-
cope, the angle condition delivers an image almost free of

ig. 6. Distortion properties of Sonnefeld’s experimental tele-
cope with low power m=1.5 and huge true field of view of 90° as
t is perceived in visual space. Only the angle condition offers an
lmost undistorted image. A visual distortion parameter l=0.6
as assumed.
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istortion, while the tangent condition generates a clearly
isible barrel distortion.

Figure 7 displays the distortion parameter k, derived
umerically, that would be required to fully eliminate the
istortion of the image in visual space as a function of the
agnification. For these calculations, a constant appar-

nt field of view equal to Sonnefeld’s telescope was as-
umed with the visual distortion parameter of l=0.6. Ob-
iously, for magnifications usually applied to handheld
inoculars, the condition k= l offers a good choice to elimi-
ate the barrel distortion. Perhaps opera glasses with
agnifications below m�4 might be designed with an ad-

itional pincushion distortion �k� l� to account for the re-
idual barrel distortion of such a wide (true) angle device.
owever, the same pincushion distortion would then turn
nnoying once the instrument were used with the rolling
ye, as was discussed in Section 6. Therefore, it is not ad-
isable to make use of the option k� l even in case of low-
ower instruments, but to stick to the condition k� l in-
tead.

. SUMMARY
n optical instrument that is used in combination with

he eye does not behave like a camera. Instead, human vi-
ual imaging imposes an additional transformation of the
mage generated by the instrument. This transformation

ay be approximated by Eq. (8), featuring the visual dis-
ortion l, which may equivalently be interpreted as a cur-
ature of our visual space (Appendix A). The exact value
f this parameter is unknown and probably shows inter-
ndividual differences, but the tests carried out by Oomes
9] and by the author (Section 3) would suggest a range of
� �0.6,0.8� valid for most individuals, with the larger
alues of l possibly being affected by systematic errors, as
iscussed in Section 6. Within this work, we have consis-
ently assumed a value of l=0.6, though the conclusions
rawn from our analysis remain valid for any other value
f l.

The choice of the ideal amount of distortion for a bin-
cular, i.e., the value of k in Eq. (4), is a difficult one and
ecessarily involves compromises. Since binocular obser-

ig. 7. Distortion parameter k that would be required to fully
liminate the barrel distortion in visual space as a function of the
ower m and assuming a visual distortion of l=0.6.
ations, similar to bare eye observations, do involve the
maging of the rolling eye, one might be tempted to choose

distortion close to the tangent condition (1), because in
his case straight contours of objects are locally imaged as
traight lines (Section 6 and Fig. 5). However, such a bin-
cular would generate a globe effect that would signifi-
antly affect the imaging characteristics of the panning
inocular (Section 5 and Fig. 4). The globe effect is elimi-
ated once the condition k= l is satisfied, i.e., the curva-
ure of the image space matches the curvature of the vi-
ual space. The same condition also guarantees an
ndistorted image if, and only if, the observer’s direction
f view coincides with the optical axis, i.e., he is fixating
he center of field. Low-power binoculars, e.g., opera
lasses, would ask for the implementation of k� l to
chieve the latter effect, but there are good reasons to re-
rain from that option and stick to the condition k� l in-
tead (Section 7).

From a historical point of view, Sonnefeld was correct
o demand the implementation of pincushion distortion
nto handheld binoculars, though he overestimated the
uantity of distortion when he suggested the angle condi-
ion �k=0�. Slevogt’s suggestion to implement the circle
ondition �k=0.5� was based on Helmholtz’s idea and ap-
ears to be close to the ideal solution. The sweet spot is
ost likely located between the circle and the tangent

ondition, a claim that coincides with the results already
eported by Sonnefeld when he did his observations with
xperimental telescopes of 10� power. However, he was
onfused by his own findings, since similar experiments
ith his 1.5� power telescope were pointing toward the
ngle condition instead. We have solved this puzzle in
ection 7, while showing that the angle condition is able
o deliver undistorted images in the case of low-power
elescopes only. It therefore appears that the ideal
mount of distortion for handheld binoculars should be
hosen between k=0.6 and k=0.8, a choice that would
eave both the globe effect and the pincushion distortion
with the rolling eye) on a reasonably low level. Binocular
esigners might also considering building oculars that
ould enable the user to modify the amount of distortion.

n this way, the observer would be able to optimize the
istortion characteristics of his instrument according to
is own individual preferences and the particular mode of
pplication.

PPENDIX A: CURVATURE OF THE
ISUAL SPACE
he transformation equation for the bare eye, Eq. (10),
enerates a certain amount of barrel distortion, depend-
ng on the value of the distortion parameter l. There has
een discussion about the origin of this distortion, which
ight be the result of a combination of different phenom-

na [12]. Here we want to interpret this distortion as an
ntrinsic curvature of the visual space, because this ap-
roach perfectly harmonizes with the experience of the
lobe effect (Section 5). In order to analyze this curvature,
e first note that the transformation generated by Eq.

10) is symmetric about the center of field, so that it is suf-
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cient to reduce its analysis to a two-dimensional cross
ection of the visual space, delivering curves in the x-z
lane (Fig. 8).
A line element along such a curve is found from Eq. (10)

hrough differentiation:

dy =
d

dA	1

l
tan�lA�
dA =

dA

cos2�lA�
. �A1�

hen defining the radius vector ��A� centered at (0, 1)
nd generating a parameterization of the curve as shown
n Fig. 8, then the following triangle equation holds for in-
nitesimal increments of the angle A:

�dy�2 = �2�dA�2 + �d��2. �A2�

his delivers the following differential equation for the
agnitude of ��A�:

d���

dA
= ±� 1

cos4�lA�
− �2, �A3�

here we consider the positive branch only. For the case
=1 and the boundary condition ���A=0��=1 we easily ob-
ain the solution ���A��=cos−1�A�, which implies that the
ip of the radius vector moves along the x axis: The result-
ng curve is flat and the visual space Euclidean (dashed
urve in Fig. 8). For l=0 we obtain d���=0 regardless of
he angle A, i.e., the vector has a constant length and de-
cribes a circle. The visual space is then spherical (dotted
urve). Both limit cases are easily verified using Eq. (10),
hich would simplify to y=A at the limit l→0. Our ex-
eriment of Section 3 implies a parameter value of l some-
here between both extremes. Figure 8 displays the cur-
ature of the visual space corresponding to l=0.6 (solid
urve, numerical solution), which is smaller than that of a
ircle, but far from being flat like the Euclidean space.

The distortions generated by the transformation for-
ula Eq. (10) may thus be interpreted as an intrinsic cur-

ig. 8. (Color online) Curvature of the visual space as a function
f the visual distortion parameter l. For l=0, the space is spheri-
al, for l=1 it is flat (Euclidean). The curves are parameterized
y the radius vector ��A�.
ature of our visual space. In the same way it can be
hown that the distortion parameter k implemented into
inocular design is related to a curvature of the resulting
mage space, which is flat only in the case of k=1. In this
ense, the matching of both parameters, k= l, means noth-
ng else but matching both curvatures, which is the key to
he elimination of the globe effect of Section 5.

Finally, we would not assume that a model as simple as
hat might be able to offer a complete description of hu-
an vision. This model was designed to be consistent
ith the checkerboard experiment, and it also explains
henomena such as the globe effect and Sonnefeld’s obser-
ations with low-power telescopes. Beyond that, we shall
efer to Mark Wagner [13]:

“In fact, the geometry that best describes visual space
hanges as a function of experimental conditions, stimu-
us layout, observer attitude, and the passage of time (p.
1). The human mind is flexible enough and the world
rovides enough variation that no single geometry can
ully encompass human visual experience” (p. 223).
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